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Benefits of ML for Atmospheric Sciences
Machine Learning (ML) methods are ideally suited for processing large datasets, extracting intricate patterns and 
approximating complex processes. As such, they have been transforming weather and climate science, increasingly 
complementing traditional methodologies for forecasting and analysing complex atmospheric phenomena.
There is evidence that ML-based solutions can be computationally more efficient than traditional methods while 
achieving comparable accuracy. Minimising the energy that is consumed by data centres and High-Performance 
Computing (HPC) resources is key in the face of climate change, and leveraging Machine Learning for scientific 
computing applications has the potential to significantly reduce the resource requirements of weather and 
climate modelling, as well as offer faster solutions to mitigate and adapt to climate change.

Applications [1]:

Observations
Autoencoders and Generative 
Models used for
- Super-resolution
- Spatial data assimilation
- Temporal interpolation

Prediction and Forecasting
Convolutional NNs, Transformers 
and Graph NNs used for 
- Weather forecasting
- Climate prediction
- Interannual variability
- Hybrid modelling

Sub-Grid Scale 
Parameterisation
Deep NNs, Autoencoders and 
Random Forests used for
- Parameter optimisation
- Equation discovery
- Emulation

Challenges of ML for Atmospheric Sciences
Building Trust
Machine Learning models in the climate 
domain will need to reliably predict trends 
over long time spans, possibly working with 
out-of-distribution inputs as the climate 
changes.
Techniques such as explainable AI (XAI) and 
interpretable models help build 
understanding for the inner workings of an ML 
solution. Integrating physical constraints into 
the architecture and training improves 
confidence in the model and its performance 
for rare events. 

Environmental Cost
The energy use of ML methods varies greatly throughout the model lifecycle. Various considerations along the 
way can help reduce the cost of each stage; such as suitable data hosting locations, preprocessing steps, 
transfer learning, and effective use of available hardware.

Data 
management

Hyperparameter 
tuning

Training, 
evaluation, and 
benchmarking

Deployment

Infrastructure: Libraries, Toolkits, Hardware

Lifecycle adapted from [2]

Overcoming these challenges requires interdisciplinary collaboration and knowledge 
exchange between domain scientists and research software engineers (RSEs).

Workstream 6
The CONTINENTS project is a 4 year-long collaborative programme of research. The project is led by EPCC, the UK’s National Supercomputing Centre at the 

University of Edinburgh, in collaboration with NCAS (UK) and NCAR (USA). Workstream 6 investigates leveraging ML for the atmospheric sciences. 

Objectives
• Develop methodologies and 

techniques for performance-, 
power- and energy-efficient 
software that can be deployed on a 
wide range of hardware. This includes 
exploiting ML to accelerate 
bottlenecks.

• Make data a first-class citizen of 
computational modelling and 
simulation to minimise the time and 
resources that are spent moving, 
processing, analysing and storing 
data. This includes preparing data to 
be used in ML model training.

Phases
1. Balancing the cost of ML training with the benefits of ML inference in atmospheric science: We survey the 

environmental impact of traditional numerical modelling and potential ML-based alternatives across various 
use cases. This includes the investigation of best practices and requirements both specific to the weather and 
climate domain, and more broadly selecting efficient ML architectures and workflows. 

2. Quantifying the sustainability of ML in HPC and data analysis workflows: Considering the integration of 
ML-based components into existing large-scale modelling workflows, we will select a relevant subset of 
models and analyse their energy use.

3. Performance and energy optimised use of ML in atmospheric science workflows: We will combine the results 
from the quantification study with the best practices to optimise the use of ML in atmospheric science 
workflows.
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