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Benefits of ML for Atmospheric Sciences

Machine Learning (ML) methods are ideally suited for processing large datasets, extracting intricate patterns and
approximating complex processes. As such, they have been transforming weather and climate science, increasingly
complementing traditional methodologies for forecasting and analysing complex atmospheric phenomena.

There is evidence that ML-based solutions can be computationally more efficient than traditional methods while E ¥
achieving comparable accuracy. Minimising the energy that is consumed by data centres and High-Performance -
Computing (HPC) resources is key in the face of climate change, and leveraging Machine Learning for scientific
computing applications has the potential to significantly reduce the resource requirements of weather and
climate modelling, as well as offer faster solutions to mitigate and adapt to climate change.

-

Applications [1]:

Observations Prediction and Forecasting Sub-Grid Scale
Autoencoders and Generative Convolutional NNs, Transformers Parameterisation
Models used for and Graph NNs used for Deep NNs, Autoencoders and https://continents-project.github.io/
- Super-resolution - Weather forecasting Random Forests used for
- Spatial data assimilation - Climate prediction - Parameter optimisation
- Temporal interpolation - Interannual variability - Equation discovery
- Hybrid modelling - Emulation

Challenges of ML for Atmospheric Sciences

Building Trust Environmental Cost

Machine Learning models in the climate The energy use of ML methods varies greatly throughout the model lifecycle. Various considerations along the
domain will need to reliably predict trends way can help reduce the cost of each stage; such as suitable data hosting locations, preprocessing steps,
over long time spans, possibly working with transfer learning, and effective use of available hardware.

out-of-distribution inputs as the climate

changes. n m
Techniques such as explainable Al (XAl) and

interpretable models help build
understanding for the inner workings of an ML
solution. Integrating physical constraints into
the architecture and training improves
confidence in the model and its performance Infrastructure: Libraries, Toolkits, Hardware
for rare events.

Data Hyperparameter e

evaluation, and Deployment

management tuning benchmarking

@ Overcoming these challenges requires interdisciplinary collaboration and knowledge

exchange between domain scientists and research software engineers (RSEs). ,
Lifecycle adapted from [2]

Workstream 6

The CONTINENTS project is a 4 year-long collaborative programme of research. The project is led by EPCC, the UK’s National Supercomputing Centre at the
University of Edinburgh, in collaboration with NCAS (UK) and NCAR (USA). Workstream 6 investigates leveraging ML for the atmospheric sciences.

Objectives Phases

* Develop methodologies and 1. Balancing the cost of ML training with the benefits of ML inference in atmospheric science: We survey the
techniques for performance-, environmental impact of traditional numerical modelling and potential ML-based alternatives across various
power- and energy-efficient use cases. This includes the investigation of best practices and requirements both specific to the weather and
software that can be deployed on a climate domain, and more broadly selecting efficient ML architectures and workflows.
wide range of hardware. This includes 2. Quantifying the sustainability of ML in HPC and data analysis workflows: Considering the integration of
exploiting ML to accelerate ML-based components into existing large-scale modelling workflows, we will select a relevant subset of
bottlenecks. models and analyse their energy use.

* Make data a first-class citizen of 3. Performance and energy optimised use of ML in atmospheric science workflows: We will combine the results
computational modelling and from the quantification study with the best practices to optimise the use of ML in atmospheric science
simulation to minimise the time and workflows.

resources that are spent moving,
processing, analysing and storing
data. This includes preparing data to

be used in ML model training. Refe frences
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