

Al-Driven Prediction of Fine Particulate Matter (PM_{2.5}) Concentrations **Using Attention-Based BILSTM**

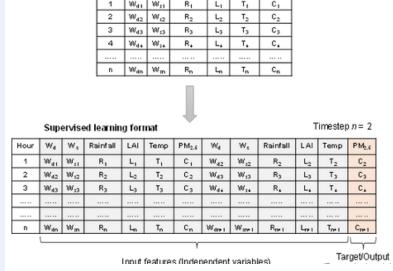
Tuyet Nam Thi Nguyen, Tan Dat Trinh. Saigon University, Ho Chi Minh City, Vietnam. ntnam@sgu.edu.vn; trinhtandat@sgu.edu.vn

1. Introduction

- Fine particulate matter ($PM_{2.5}$), particles with a diameter of less than 2.5 μm, poses a major health risk to humans.
- LSTM & BiLSTM models have been increasingly used to predict PM_{2.5} pollution.
- Attention mechanisms are a powerful enhancement in time-series modeling.
- The number of timesteps directly influences the model's ability to capture temporal dependencies.

2. Research Objectives

- To provide insights into PM_{2.5} pollution in Ho Chi Minh City (HCMC).
- To develop an advanced DL model for enhancing the accuracy of PM_{2.5} concentration prediction.
- historical input lengths) on model performance.

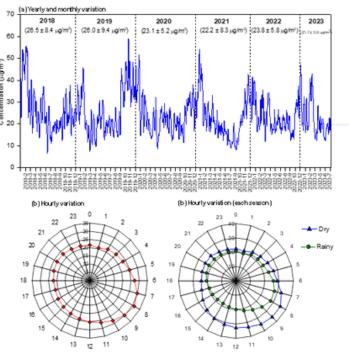

3. Method

3.1. Data collection

- Hourly concentrations of PM_{2.5} in HCMC: obtained from the AirNow monitoring network.
- Meteorological data: obtained from ERA5.
- Study period: 01/01/2018 to 17/06/2023.

3.2. Data preprocessing

 Data were converted into supervised learning format.

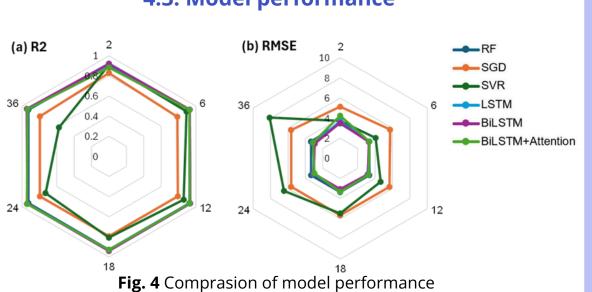

Fig. 1 Data conversion with a timestep of 2 as an example.

4. Result & Discussion

- To evaluate the influence of different time lag values (i.e.,

concentrations

4.1. Temporal variation of PM_{2.5}



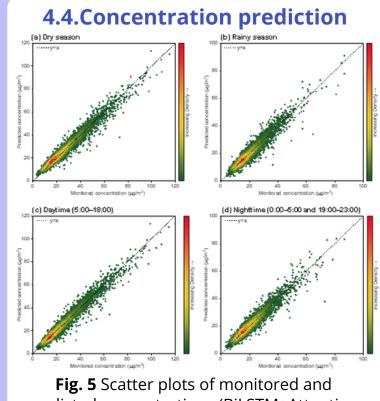

4.2. Effect of meteorological conditions on PM_{2.5} concentrations (a) Spearman correlation (b) PLS analysis W. Rainfall LAI Temp UV

Fig. 3 Spearman and Partial least square (PLS) analysis

4.3. Model performance

Best performance model: BiLSTM with attention, timestep = 24

predicted concentrations (BiLSTM+Attention, timestep n=24)

3.3. Proposed model

Table 1 Hyperparameters of Ril STM+Attention model

Table 1. Hyperparameters of BiLSTM+Attention model.	
Hyperparameters	Value
Input timesteps n	2, 6, 12, 18, 24,
	36
Number of features of the input	7
dimension	
Activation function of Conv layer	ReLU
BiLSTM layers	2
Number of features per timestep	256 and 128
Dropout rate	0.5
Number of units of dense layers	128, 64, 1
Optimizer	Adam
Batch size	64
Learning rate	0.001
Number of epochs	100

5. Conclusion

- PM_{2.5} concentrations in the rainy season were lower than those in the dry season.
- PM_{2.5} concentrations exhibited strong negative relations with certain meteorological variables (i.e., rainfall intensity, ambient air temperature, and wind speed)
- BiLSTM+Attention achieved its best performance when both auxiliary variables and PM_{2.5} concentrations from the previous 24 hours were used as inputs.
- The model attained a coefficient of determination (R²) of 0.944 and a root mean square error (RMSE) of $2.957 \mu g/m^3$.